Original text

The encoding process therefore shall be as follows:

- A group of *K* information bits $u = [u_1, u_2, ..., u_K]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block.
- A total of *S* zero padding bits are appended at the end of *u* to form the full-length information bit block $u^* = [u \mid 0, ..., 0]$, which is then sent to the information bit de-interleaver module, which in turn produces the bit-de-interleaved sequence $u'' = \pi^{-1}_{info}(u^*)$. π^{-1}_{info} represents the de-interleaver mapping of information bits that permutes u^* to u''.
- The de-interleaved QC-LDPC information bits u'' are sent to the QC-LDPC encoding engine, and used to compute parity-check bits p'' with the parity-check matrix H, and p'' is then interleaved to get $p^* = \pi_{\text{parity}}(p'')$. π_{parity} represents the interleaver mapping of parity bits that permutes p'' to p^* .
- M + P parity bits $p^* = [p_1, p_2, ..., p_M | p_{M+1}, ..., p_{M+P}]$ are sent to the puncturing block.
- The last *P* bits of p^* are truncated, and *M* parity bits $p = [p_1, p_2, ..., p_M]$ are copied to the output of the encoder to form the parity-check bits.
- --- The FEC codeword without delimiter is $c = [u | p] = [u_1, u_2, ..., u_K | p_1, p_2, ..., p_M]$, such that $[u'' | p''] H^T = 0$.

Proposed text (changes unmarked)

The encoding process therefore shall be as follows:

- A group of *K* information bits $u = [u_1, u_2, ..., u_K]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block.
- A total of *S* zero padding bits are appended at the end of *u* to form the full-length information bit block $u^* = [u \mid 0, ..., 0]$, which is then sent to the information bit de-interleaver module, which in turn produces the bit-de-interleaved sequence $u'' = \pi^{-1}_{info}(u^*)$. π^{-1}_{info} represents the de-interleaver mapping of information bits that permutes u^* to u''.
- The de-interleaved QC-LDPC information bits u'' are sent to the QC-LDPC encoding engine, and used to compute parity-check bits p'' with the parity-check matrix H.
- M + P parity bits $p'' = [p_1, p_2, ..., p_M | p_{M+1}, ..., p_{M+P}]$ are sent to the puncturing block. The last *P* bits of *p*'' are truncated, and *M* parity bits $p'' = [p_1, p_2, ..., p_M]$ are passed to the interleaver module.
- *M* parity bits *p*'' are interleaved to get $p^* = \pi_{\text{parity}}(p'')$. π_{parity} represents the interleaver mapping of parity bits that permutes *p*'' to *p**.
- *M* interleaved parity bits $p^* = [p_1, p_2, ..., p_M]$ are copied to the output of the encoder to form the parity-check bits *p*.
- --- The FEC codeword without delimiter is $c = [u | p] = [u_1, u_2, ..., u_K | p_1, p_2, ..., p_M]$, such that $[u'' | p''] H^T = 0$.

Proposed text (marked changes)

The encoding process therefore shall be as follows:

- A group of *K* information bits $u = [u_1, u_2, ..., u_K]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block.
- A total of *S* zero padding bits are appended at the end of *u* to form the full-length information bit block $u^* = [u \mid 0, ..., 0]$, which is then sent to the information bit de-interleaver module, which in turn produces the bit-de-interleaved sequence $u'' = \pi^{-1}_{info}(u^*)$. π^{-1}_{info} represents the de-interleaver mapping of information bits that permutes u^* to u''.
- The de-interleaved QC-LDPC information bits u'' are sent to the QC-LDPC encoding engine, and used to compute parity-check bits p'' with the parity-check matrix H, and p'' is then interleaved to get $p^* = \pi_{\text{parity}}(p'')$. π_{parity} represents the interleaver mapping of parity bits that permutes p'' to p^* .
- M + P parity bits $p^{*} = [p_1, p_2, ..., p_M | p_{M+1}, ..., p_{M+P}]$ are sent to the puncturing block.
- The last *P* bits of $p_{\underline{}}^{\underline{}} = [p_1, p_2, ..., p_M]$ are <u>passed to the interleaver</u> <u>module</u>copied to the output of the encoder to form the parity check bits.
- <u>*M* parity bits p'' are interleaved to get $p^* = \pi_{\text{parity}}(p'')$. π_{parity} represents the interleaver mapping of parity bits that permutes p'' to p^* .</u>
- <u>*M* interleaved parity bits $p^* = [p_1, p_2, ..., p_M]$ are copied to the output of the encoder to form the parity-check bits p.</u>
- --- The FEC codeword without delimiter is $c = [u | p] = [u_1, u_2, ..., u_K | p_1, p_2, ..., p_M]$, such that $[u'' | p''] H^T = 0$.